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Abstract 

The dynamical instability of the interstellar gas, caused by the galactic cosmic 

rays and magnetic field, i s  examined for the purpose of gaining a more detailed under- 

standing of the phenomenon. The decrease of the field energy CIS the gas goes into 

clouds i s  illustrated with a simple example. It i s  shown, too, that a tissue of field, 

formed by superposing alternate layers of f ie ld a t  right angles to each other, fails to 

produce stability. As suggested earlier, i t  appears that there i s  no stable confinement 

of magnetic fields by the weight of the interstellar gas. 

It i s  shown that the instability develops very short wavelengths in  the direction 

perpendicular to the galactic gravitational f ie ld 3 and magnetic f ie ld . 
The result i s  that the interstellar gas must be in  a continual state of turbulence and 

CI 

fragmentation, terminating only when the clouds become so dense that self-gravitation 

becomes dominant. The turbulence and fragmentation enhance amblpo!cr diffusion to 

such an extent that the f ie ld escapes from the gas rapidly compared to the usual 

ambipolar rates. It i s  suggest that this may contribute to the escape of the magnetic 

fields from the interstellar gas which forms stars. 



1. Introduction 

It was demonstrated earlier (Parker, 1966b, hereafter referred to as I, and 

Lerche, 1966) that the cosmic rays and the galactic magnetic f ie ld both produce an 

instability which drives the interstellar gas into clumps. The process i s  basically 

a Rayleigh-Taylor instability. The clumps of gas are separated by distances of the general 

order of 100 pc and are to be identified, we suggest, with the observed individual 

interstellar clouds. 

It was shown in  two dimensions that the instability may be expressed in 

terms of an equivalent self-attraction of the interstellar gas, resembling self-gravitation. 

The self-attraction produced by the instability i s  a factor 

stronger than self-gravitation, where 

tational f ield perpendicular to the disk of the galaxy, 

constant, and B 
on the central plane of the galaxy, because vanishes there, and rises to a value 

of 5 or 10 a t  a distance of 100 pc above the central plane. Hence i t  was pointed 

out that the cosmic ray, magnetic f ield instability i s  probably the dominant force, rather 

than self-gravitation, for collecting the interstellar gas into clouds and for init iating the 

collapse of gas clouds to form stan. But t h i s  w i l l  be discussed i n  a later paper. 

s2/ G 8’ times 

5 i s  the acceleration of the galactic gravi- 

G i s  the gravitational 

i s  the galactic magnetic f ie ld density. This factor vanishes 

2 

The purpose of the present paper i s  to look further into the general properties 

of the cosmic ray, magnetic f ield instability. The dynamical behavior of the gas clouds 

produced by the init ial  instability i s  a nonlinear phenomenon. It i s  not subject, therefore, 

to a simple comprehensive analytical treatment, as Was the in i t ia l  linear instability of an 

equilibrium atmosphere. The only path open for theoretical exploration of the problem i s  

the construction of a variety of idealized examples, each illustrating some single facet 
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of the more complex behavior of the overall system. This paper introduces a number 

of formal examples, worked out in the appendices, for the purpose of instructing 

ourselves on the general behavior of a gas, field, cosmic ray system confined by gravity. 

The main text of the paper describes the individual examples and points out the general 

tative conclusions which they suggest. 

In I the instability was treated by a linear perturbation analysis of the 

ibrium states of a number of simple gas-field systems confined by gravity. The 

equilibria were a l l  found to be unstable for an interstellar gas in  which radiative cooling 

prevented the temperature from rising rapidly 
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upon compression, The physical basis for the instability i s  easily understood: 

Perturbing the magnetic lines of force causes the gas to flow downward along the lines 

of force, accumulating i n  the low places along the lines, thereby depressing the low 

places further. The final energy i s  then lower than the in i t ia l  energy. The lower 

final energy i s  illustrated by direct calculation i n  section II for a simple case. 

The nature of the forces between elements of gas are examined in  three 

dimensions demonstrating both the similarity and difference from self-gravitation. The 

similarity (pointed out in I )  i s  that in  the plane defined by the vectors 2 and 
cc 

B the force between any two elements of gas i s  of the same form as their gravi- 
r.- 

tational attraction. The difference i s  the repulsion in the third dimension; elements 

of gas do not l ike to remain side by side. This suggests that the in i t ia l  linear instability 

of the gas-field distribution i s  even stronger in  three dimensions than shown by the 

simple two dimensional treatment given in  1. A more detailed linear perturbation 

analysis i s  taken up in section IV and the conjecture i s  confirmed. In the absence of 

diffusion the most unstable modes are those in which the wave number perpendicular 

to the 

wave number for instability. Altogether the calculations indicate that the interstellar 

g a s  exists in a dynamical state of progressive fragmentation unt i l  the individual clouds 

become so dense that self-gravitation takes over. The calculations suggest, too, that 

the combination of dynamical instability and ambi-polar diffusion leads to rapid motion 

of the gas across the magnetic lines of force. The effect would appear to be important 

i n  freeing the gas from the f ie ld during the condensation into stars. 

3 8  -plane i s  infinitely large. The limiting effects of diffusion give an optimum 
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II. Energy Decrease Through Clumping of the G a s  

The linear perturbation analysis shows that a cosmic ray and magnetic f ie ld 

system confined in  equilibrium by the weight of a thermal gas i s  unstable. It was 

suggested in  I, on the basis of the linear analysis, that the instability i s  responsible for 

the observed clumping of the interstellar gas. The statement of the final clumping 

was made on the basis of the general physical nature of the instability, rather than 

from calculation, because, of course, the linear perturbation analysis does not apply 

when the clumping becomes severe. It i s  instructive, therefore, to look directly 

a t  the energy of the system, which can be calculated when the perturbation of the 

in i t ia l  uniform equilibrium state has grown to large amplitude. We carry out the 

calculation for an in i t ia l  equilibrium of a f la t  isothermal atmosphere with constant 

gravity. Many other geometries can be worked out, as i n  I, but one i s  sufficient 

for the present purposes. 

Imagine a horizontal magnetic f ield of density B( 2 )  extending in  

the y -direction as shown in Fig. 1. Suppose, for the moment, that the cosmic ray 

pressure can be neglected. The system i s  confined by the weight of the thermal 

gas (of density y( 2 )  and uniform thermal velocity 

pressure i s  p ( z >  = p(2) u p  ) in  the gravitational f ie ld 

u such that the gas 

I S  

s daken to be 
in  the 2 -direction; the gravitational accelera?ion -3  

a constant i n  the present illustration. The base of the system i s  a t  2 =O, repre- 

senting the central plane of the galactic disk. The reader may suppose that the mirror 

system of fields f i l l s  the space < 0. For the simple case that the magnetic 

pressure i s  proportional to the gas pressure throughout the atmosphere, say 
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i s  a constant, hydrostatic equilibrium requires that 

i n  z - > 0, where the scale height A /2 i s  (uL+ L$ ' I /  3 
The reduction i n  magnetic and cosmic ray energy as a result of clumping 

of the gas into slabs i s  readily demonstrated. It i s  this reduction which pushes the 

gas into clumps. Imagine that the magnetic f ield i s  held in  i t s  in i t ia l  horizontal 

configuration by a suitable array of demons while the gas i s  slowly compressed into 

vertical slabs of thickens 2 a , separated by intervals of z b  , by sliding 

the gas along the lines of force. The configuration, including the straight lines 

of force, i s  illustrated in  Fig. 2. Suppose that the slabs of gas occupy the regions 

(Zm+ I )  b + Zr\a 4 2 L, (2nt I )  b +(?n+2)d, where 

integer running from --CD to + ~3 . Some small amount of work i s  

done in  compressing the interstellar gas*, though this is  rather small in most 

cases because of the low temperature. 

n i s  an 

Following compression of the gas, hold the gas fixed and permit the mag- 

netic f ie ld in  the spaces between the slabs of gas to relax into the equilibrium form, 

& =  - v #  I v 'y  = 0 . The boundary conditions 

The work done per unit length in  the 
showntobe [ 2 p ( o )  A b / ( s - d ] ]  ( l + a / b )  [(J+b/a)'-'-2) 
for the simple case that the pressure i s  proportional to the 
during compression. If 
It i s  readily shown that the work reduces to 2pC0) A b 
l imi tas b/a + 0 and i s  a monotonically increasing function of b/a 
when 5 > 0 . 

x - direction in  forming each slab, i s  readily 

c power of the density 

s = 1, the work done i s  2 pto) Ab (I+b/b)ln(l+ b / b )  
i n  the 

. 
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are that b vanishes a t  3 = t , that no lines of force cross 
LII 

4 2 = o  , and that the f ield remains frozen into the gas. This boundary value 

b problem i s  easily solved (see Appendix I). The f ield takes up the expanded form 

sketched in Fig. 2. The total energy of the field, per unit length in the 

contained in - b < 

X -direction, 

< + b decreases below the init ial  f ield energy )* 
&, = B'(o) A b / B x  by the amount A S  , plotted 

in Fig. 3. It i s  readily shown (see Appendix I) that 

monotonically with increasing gap width, from zero to one as 

A€/ Eo increases 

b/ A. increases 

, *  

from zero to infinity. 

We see, then, that the tendency to clump i s  driven a t  least in part by the 

magnetic energy decrease ae which the clumping permits. If cosmic rays are 

present, they expand along with the field and make an additional contribution to A€ . 
Calculation of the magnetic field i n  the gap between slabs of gas indicates 

(see Appendix I) that the net force(magnetic plus gravitationa1)on the slabs of gas 

(constrained to the density distribution exp( - 2 ? / A  )) i s  upward at  large 2 

and downward a t  small 2 . This indicates the direction in which the gas moves 

when the constraints on the g a s  are removed. The larger the gap width b between 

sheets, the larger i s  the mass in each sheet. Hence, as one would expect, a larger gap 

width means that a larger portion of the sheet descends when released. For any finite 

gap width the clumping of gas into the observed interstellar clouds in the galactic 

disk i s  accompanied by a descent of the gas near the central plane of the disk and 

by an elevation of the gas a t  large distance from the central plane of the disk." 

* A more detailed study i s  given by Lerche (1967). 
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Generally speaking, when released, the sheets w i l l  redistribute themselves 

vertically, contributing a further reduction of the total energy. Neglecting the 

thermal energy of the gas, i t  follows that A E  , given in  Fig. 3, i s  a lower 

l i m i t  on the energy change caused by clumping of the gas. The observed clumped 

state of the interstellar gus is, then, a lower energy state than a more uniform 

distribution over the galactic disk. 

111. Properties of the Magnetic Field Cosmic Ray Instability 

Consider the instability of an atmosphere of thermal gas whose weight confines 

large-scale magnetic fields and/or cosmic ray gas. In I the problem was considered 

only i n  the two dimensions defined by the magnetic f ie ld and the galactic - 
. We now introduce the third dimension d gravi tationa I acceleration 

MII 

Suppose that a cold gas confines a horizontal magnetic f ie ld i n  the 

7 -direction leading to the equilibrium described by (1) with = 0, 

sketched in Fig. 1. Ignoring the stabilizing effects of  diffusion and viscosity a t  

large wave numbers, i t  i s  shown in  Appendix II that the system i s  unstable for all 

wave numbers ( k, , k, k, ) of the perturbation. In discussing the 

k/ growth rate of the instability i t  i s  convenient to treat the wave number 

(parallel to the magnetic field) as the basic dependent variable and then inquire 

what effects k, and k may have for a given kr . The calculations 

show that, for a given k, , the fastest growth occurs either for the vertical 

wave number k ,  equal to zero (in which case the growth rate of the instability 

i s  independent of the horizontal wave number k, i n  the direction a”& ) 

or for the horizontal wave number in the direction s”E very large, - 

c’ 

.) 

* 
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k, >> kr ~ k, . Obviously diffusion of any kind would prohibit 

so the most unstable mode i s  

i s  a monotonically increasing function of 

large 

by exp( t / r  

k, -9 a , 

k2  =O. In this case the growth rate of the instability 

5 , limited only by diffusion a t  very 

. Neglecting diffusion and denoting the exponential growth with time k, 
) one finds that 

for kr A << 1.and 

(3) 

in the l imi t  of large k7 A . We recognize (9 /A) as the characteristic 

free-fall time over a distance comparable to the scale height A . 
Thus we find again, as with a l l  the cases worked out in  I, that the character- 

istic time of growth of the instability i s  the free fal l  time. 

It i s  instructive to digress for a moment, before going on to explore the effects 

of k, and k a when the gas i s  hot and cosmic rays are present, to the more 

general question considered in  1, v iz  whether there are any special magnetic configura- 

tions which permit a stable equilibrium. We explored a number of configurations in  I 

and found them all to be unstable, from which we suggested that there were no stable 

configurations. Lerche (1967) has since explored a rotating system, finding that i t  

too i s  unstable in  the free fall time. Introduction of the third dimension 
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permits a s t i l l  different situation to be treated here, and in view of the importance of 

the question of general instability, we mention i t  briefly before returning to the inquiry 

into the effects of k, and k, . 
It i s  well known that systems wherein the f ield confines the gas are more 

stable i f  the f ield contains a strong shear, the reason being that the tension in the lines 

of force in each layer of f ield lies across the lines of force in neighboring layers and 

therefore tends to stabilize fluting instability i n  the neighboring layers. We investigate, 

therefore, i n  Appendix IV the stability of alternate layers of perpendicular field. A 

horizontal slab of f ield i n  the y -direction with a vertical thickness a i s  

overlaid with a horizontal slab of f ield in the -direction of thickness a , 

which in turn i s  overlaid with a slab in the 

field density follows from (1) independent of the f ie ld direction*. The boundary 

conditions require that the horizontal wave number 

slab, and so must k, and T . The calculations show that the fastest growing 

mode i s  k, = O  with k, = k2 . The growth rate l / T  i s  the - same 

function of k, as when the magnetic f ie ld i s  only in the -direction, given 

by (2) and (3). In terms of the total wave number 

the growth rate i s  slower by 2 

-direction, etc. The equilibrium I 

k ,  must be the same in each 

k 
k e ( k: C kpz) 

when k A < <  1 (since k, = k / Z v a  ), ‘ / a  

* We ignore possible small-scale instabilities which might occur in the high shear a t  
a t  the interfaces between slabs. They are of a different nature from the gravitational 
instability with which we are presently dealing, and so far as we can see, they would 
not enhance the overall stability of the system. 
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yielding 

in place of (2). When 

find that the magnetic configuration has l i t t le stabilizing effect. The characteristic 

growth time of the instability i s  the free fall time irrespective of the form of the 

magnetic field. 

k > > 1, the growth rate i s  unaffected. Thus again we 

We return, then, to the investigation of the effects of k ,  and k a  on 

t ! x  growth rate of the instability i n  the simple case of a thermal gas confining a 

horizontal magnetic f ie ld with its lines of force a l l  in the 

(see Fig. 1). Consider the effect of warming the gas. The equilibrium i s  described by (1). 

The stability i s  treated a t  length i n  Appendix II, and an important modification of the 

simple cold gas appears. Denote the magnetic pressure 

times the gas pressure @)u, so that the Alfven speed P 
assume that the pressure in an element of gas changes linearly with the density, 

Y -direction 

B ~ ( Z ) / ~ X  as a 
L 

VA i s  (2 #)''2 3 ; 

s P / p  = 3/ s p / p  when perturbed. The temperature* of the 

interstellar gas i s  regulated so closely by radiative transfer that in most cases 

< 1 (See I). The difference from the cold gas system i s  that short wavelengths 
N 

The reader may, i f  he wishes, include turbulent velocities in the gas pressure, but we 
have no way of knowing what they might be in the hypothetical ini t ial  gas distribution. 
Presumably turbulence i s  dissipated and regenerated a t  a more or less constant rate, 
suggesting that perhaps ;V N 1 for turbulence too. 

* 
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are now stable, their instability being resisted by the non vanishing gas pressure. 

If kz =O, i t  follows from (I1 24) that the upper l imit on k ,  and k ,  

for instability i s  

The lef t  hand side of the inequality i s  greater than, or equal to, zero. Hence in order 

that instability exist a t  some nonvanishing wave number, i t  i s  necessary and sufficient 

. Since the 

right hand side of the inequality (5) appears to be of the order of unity in the galaxy, 

i t  follows that the shortest unstable wavelengths are of the same general order of 

magnitude as the scale height of the gas distribution, some 100 pc for the disk as a 

whole. The wavelengths for maximum growth rate are also 0 ( A) . All  longer 

wavelengths are unstable, but with a diminishing growth rate as the wavelength becomes 

large compared to A . 
It i s  interesting to reflect for a moment what wavelengths w i l l  dominate in 

the final clumped state of the gas (see I for discussion of cloud formation). 

aI rea dr 
unstable i. e. the conditions satisfy (5), i s  for a wave number 

AS 
nojed the maximum growth rate i n  an atmosphere which in i t ia l ly  i s  

of the order of 

> 
k, 

, intermediate between zero and the maximum allowed by (5). One / A  
would expect some wavelength in the vicinity of the maximum growth rate to dominate 

the interstellar gas clouds. Roughly speaking then, the cloud spacing would be of the 

order of the scale height, 100 pc, which, observationally, i s  the correct order of 

magnitude. But there i s  another point of view that should be noted. Imagine that the 

I 
b 

. 
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interstellar gas i s  in i t ia l ly  a uniform slab of gas in the galactic disk which i s  stable 

because the gas pressure dominates the magnetic f ield and cosmic ray pressure with a 
3 

y which i s  significantly greater than 1. Then suppose that conditions change 
b 

very slowly in the direction of instability. The first wavelengths to become unstable 

are very long, A k, < < 1. The growth rate i s  very slow, but i f  conditions are 

changing sufficiently slowly, the long wavelengths w i l l  have time to develop before 

shorter wavelengths become unstable. In this way i t  i s  theoretically possible for the 

scale of the clumping of the gas to be extremely large. 

It i s  our impression that the interstellar gas does not start out in a stable 

state, gradually going unstable, i n  the galaxy a t  the present time. Hence we expect 

' 8  

that the scales w i l l  be of the order of the scale height A , ranging, therefore, 

over 10 - 10' pc. But the theoretical possibility of much larger scales i n  other 

galaxies, or a t  other times in our own galaxy, should be kept in mind. 

The next step i s  to consider the effect of the transverse horizontal wave number 

. The dispersion relation shows that the growth rate of the instability increases k x  

with increasing k, . When we include 

> > 1 (see ( I !  26)) and requires only that 

k, , the greatest instability i s  for 

A 2 k :  

there being no restriction on k now. 

Comparison with (5) shows that the instability extends to larger wave numbers 

. In order that instability exist a t  a l l  it i s  necessary and sufficient to require kr 
only that 1 + 04 > 3" . 
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The fact that the instabi 

horizonta I transverse wave I engths 

i ty  has the highest growth rate for very short 

k,A > > 1 i s  interesting, because, as we shall 

show in  the next section, i t  may permit rapid diffusion of the thermal gas across the 

magnetic lines of force, which i s  important in  star formation, But before going into 

this question, consider the nature of the instability driven by cosmic rays, which 

have been ignored in the calculations discussed above. 

Suppose that the thermal gas i s  not cold and i s  threaded by a magnetic f ie ld 

whose pressure i s  negligible and whose lines of force are horizontal. Then the direction 

of the lines of force in the horizontal planes i s  unimportant, but to f ix  ideas suppose 

that the f ie ld in  the Y -direction, as in  Fig. 1. The function of the f i e l d  i s  to 

tie the cosmic ray gas, of pressure P( E> , to the thermal gas, whose pressure i s  

( 2 )  u a . Writing p tpy(2) u ' , where /B i s  P'P 
a numerical constant, the equilibrium state i s  

atmosphere is worked out in Appendix 111. The system i s  unstable provided only that 

1 + p > r . The growth rate I/T 

k .c ( k x a +  &,'y' 
depends upon the wave number 

in  the same general way as l/T 

depended upon 

(3). Even though the thermal gas may be fairly hot, 

k, i n  the cold gas confining a strong field, described by (2) and 

l / r  increases monotonically 

with increasing k , approaching the free fal l  time in 

. 
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the l imit of large k . 
This i s  i n  contrast to the instability of a hot gas and strong magnetic field, 

i s  stable. The hot g a s  and strong field together are able to 

, even though taken separately they cannot. 

k7 
i n  which large 

suppress the instability a t  large 

It i s  readily seen, then, that when cosmic rays, strong magnetic field, and a relatively 

hot thermal gas with y 

stabilize the large wave numbers 

k, 

> 1 are a l l  combined, the magnetic f ie ld and the hot g a s  

k7 , so that the fastest growth rate occurs for 

large horizontal transverse wave numbers k with k> = O ( I / A ) .  

The characteristic growth time i s  then the free fal l  time, of course. 

IV. Instability a t  Large Horizontal Transverse Wave Numbers 

The instability driven by magnetic f ield and cosmic rays proceeds somewhat 

more rapidly when the horizontal transverse wave number 

when k,  i s  comparable to the wave number k7 along the f ield (see (6)). 

This effect may be important i n  the evolution of the interstellar gas, so its merits 

fu rther i nqu i ry . 

k, i s  larger,than 

First of all, why does the instability proceed more rapidly when k ,  i s  

large? The answer to this question appears to be that the perturbed lines of force 

crowd each other less i f  lines separated by small distances over the horizontal 

transverse direction x are 7r out of phase with each other. For then 

the raised portion of one line can expand into the space ie i t  by the sinking pertlor; 

of the neighboring line. 

Another way to understand the greater instability a t  large k, i s  worked 

out i n  Appendix V. The force which one element of gas exerts on another when both 
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are suspended in  a large-scale horizontal magnetic f ie ld 

geometry i s  illustrated i n  Fig, 4, with the galactic gravitational acceleration 

i n  the negative direction. The calculations show that, when the separation 

the lines of force i s  large compared to the distance 

the lines of force through the two elements, the force i s  independent of the separation. 

The force i s  then attractive i f  the horizontal separation 

through the elements i s  less than their vertical separation 

B i s  calculated. The 

9 e-J 
y along b 

between 
'/2 (z + P ' 1 

z of the lines of force 

, The force i s  repulsive 

i f  x exceeds i! . The magnitude of the force i s  f/ G 8' 

true gravitational attraction of the two elements of gas i f  they were separated 

When the separation y i s  small compared to the distance ( X I +  

times the 

by 

a)Ya 

'J z 
between the lines of force, the force i s  attractive i f  x 4 Z 2 and 

repulsive otherwise. The magnitude of the force i s  again 

larger than the true gravitational force between the elements. 

sa/ G B' times 

The physical basis for the forces of attraction and repulsion i s  straightforward. 

Consider the downward deflection of the lines of force supporting the weight of an 

element of gas of mass , sketched in  Fig. 5. The downward deflection displaces 

the surrounding lines downward i f  they l ie  above or below. This forces upward the lines 

a t  the sides. Thus the neighboring lines are not level, some sloping towards the suspended 

element of gas and others sloping away. Another element of gas suspended on the f ie ld 

w i l l  slide downward along the lines as a consequence of the galactic gravitational accel- 

eration 

gas attract i f  the lines that thread them l ie more above or below than beside each other. 

The elements repel i f  the lines are beside each other. We would expect, therefore, 

CJ 
. If downward i s  away, the effect i s  repulsion. Hence two elements of 
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i n  view of the repulsion of elements lying side by side, that the instability of an 

atmosphere suspended in  the field w i l l  be greatest when elements of gas lying side 
3 

. by side may move apart. Hence large k, gives the greatest instability, 

Consider the consequences of the instability a t  large k ,  . From the 

simple linear point of view, the gas tends to be sliced up over very short scales 

perpendicular to the field, This tendency, to break up into small dimensions across 

the field, continues even after the gas has fallen into condensed clouds suspended 

in  the field. The calculations show that the instability occurs over so broad a 

spectrum (see Fig. 6) as to produce motions which have some resemblance to white 

I / noise or turbulence, even while the motions are st i l l  linear. The effect might also 
I 

be described as progressive fragmentation, particularly after the gas has formed into 

clouds. The present simple mathematical treatment does not give a more precise 

picture than i s  conveyed by the vague terms "turbulence" and "fragmentation". 

But i t  i s  evident that the interstellar gas clouds must be in a continually complicated 

dynamical state and have ragged forms. 

I Now ambipolar diffusion, viscosity, resistivity, etc. can be ignored as a 

first approximation when dealing with motions over 10 - 100 pc. But when the charac- 

teristic scale over one or more dimensions decreases below 10 pc such diffusive effects 

become important. The effects increase as k, and must be included when k, 2 

becomes large. 

The limitation by diffusion i s  treated formally in Appendix VI. If the f ie ld 

diffuses through the gas with a diffusion coefficient ( 2 i s  just 

c ' /  4nc; in  the hydromagnetic case where 6 i s  the scalar 
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electrical conductivity in  esu), i t  i s  shown that the wave number for maximum growth 

rate i n  the linear state i s  

k * =  O ( d / A )  

where R, i s  the magnetic Reynolds number (A'J  / r z  ))/1 for 

the diffusion coefficient 2 and the characteristic velocity 

Since R,,, > > 1, i t  i s  evident that k, i s  large compared to I / A  and hence 

large compared to kr and k 2  . 
The formal calculations show that the maximum in ttx growth rate i s  a very 

broad one because in  the absence of diffusion the growth rate L/T i s  approaching 

only asymptotically to the finite l imiting value 01 ( $ / A T a ]  as 

k, - 00 . Hence [/T increases only very slowly with k ,  when 

k, > > i/fi and hence only a very l i t t le  diffusive dissipation i s  needed to l i m i t  

the increase of L / T  . The result i s  that over the entire range I / A  4 k, 4 

R.?/ A * the growth rate i s  very nearly equal to the maximum growth 

rate 0 [ ( CJ /A)"') a t  L a  = R,"//\ . The instability vanishes 

only as k, -L) . The broad maximum i s  illustrated i n  Fig. 6. Consequently 

a very broad distribution of instabilities, centered on 

i s  expected. 

kz = 

* Obtained by equating the diffusion rate 
rate 

to the l imiting instability 

t 

I 



. 
-1 7- 

Consider the quantitative limitations on k, imposed by diffusion. The 

most effective diffusive process i n  the neutral interstellar gas i s  ambipolar diffusion, 

with an effective diffusion coefficient (Schluter and Biermann, 1950; Cowling, 1957) 

with the very rough approximation that B %/ 8 II i s  comparable to 

N k T  , where M i s  the mass of the neutral atom (mainly hydrogen), 

N i s  the number of neutral atoms per unit  volume, N e  i s  the number of 

electrons pes unit volume, A is the ion-neutral collision cross section, W i  i s  

the ion thermal velocity, and T i s  the temperature of the neutral gas. The ion 

masses are typically IO - 30 times the hydrogen mass. Osterbrook (1961) gives AM,. 
2.5 x 10 -9 3 cm /sec under the usual interstellar conditions. The electron density 

be i s  presumably 0 ( 10 - N )  so that for T = lo2 OK or 

B = -6 
= 5 x I O  gauss the diffusion coefficient is of the general order of 

3 
3 x 1022/N cm2/sec. Hence for a smeared out average of h/ = 3/cm , we have 

23 2 
-0 (10  ) cm /sec within a factor of ten. The magnetic Reynolds number 'I 

-9 
= 3 x 10 cm/sec is, then, r for A = 100 pe, 

R, = O(2o4) 
within a factor of ten. 

The large value of the Reynolds number justifies the neglect of diffusion i n  

the preliminary discussion of the instability. The characteristic diffusion time over 

18 10 
a scale of 100 pc i s  A2/q = (10 ) s e c = 3 x  I O  years. Over IO 

8 
pc i t  i s  3 x 10 yrs. These times are to be compared with the characteristic free fal l  
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R, = 10 4 i t  follows that the instability Now for A = 100 pc and 

has a scale of the general order of 100 pc along the magnetic field. The growth rate 

i n  terms of kx i s  plotted in  Fig. 6 for k) A = 1 and kg A =OS, 1, and 

2 to illustrate the broad range over k, , from about 2 / f i  to 

i.e. from about 1 to 100 pc. The maximum growth rate i s  i n  the v ic in i ty of 10 pc, 

emVa/A , 

but i t  i s  evident that the whole range i s  effectively unstable. The gas i s  set into 

motion with scales across the f ie ld as small as 1 pc, leading ultimately to diffusion 

times of only 106 - I O  7 years. 

Altogether, the broad spectrum of the instability suggests that most inter- 

stellar clouds are made up of turbulence and fragments and the clouds are i n  the 

process of further fragmentation down to scales somewhere i n  the general v ic in i ty of 

1 pc. It appears that the disordered dynamical state may cease only when the cloud 

becomes do dense as to be dominated be self-gravitation. 

V. Enhanced Diffusion 

The tendency for the gas to be broken into small scales across the magnetic f ie ld 

produces an effect which may possibly lead to a rapid separation of the gas from the 

field. The possibility i s  not without interest to the theory of the formation of stars, 

wherein the observed stellar fields of 1 - 10 gauss are far below .the lo6 - 10 gauss 3 9 

expected when interstellar gas condenses into a star carrying the interstellar f ie ld 

with it. (See review by Mestel, 1966). 
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J 
I 

* 

Consider the gas in  a clump a t  the low point along a magnetic line of force, 

as indicated by the point A in  Fig. 7. The point E in  Fig. 7 i s  displaced a 

distance 7T/ k from A SO that B l ies on the high point of a 

line of force. The gas density a t  8 i s  relatively low, just as a t  A i t  i s  

relatively high. If the diffusion coefficient i s  , the gas diffuses from A 

to 6 in  a time of the order of  . Upon arrival a t  5 
the gas slides down the line of force to the low point, thereby decreasing i t s  altitude 

by a distance of the order of 

1 / 7 

l / k ,  , or A , (assuming that the instability 

has had time to develop significantly). Hence the average rate of descent 

the gas i s  of the order of 

y of 

\ kxa A 
As the breakup of the gas progresses, wave numbers k, appear 

throughout the interval ( 1 / A Rk ”/ A ). As the 

clumping progresses, further break up occurs, as discussed in  section IV and Appendix 

V, so that k x  , and hence v , become very large. In the simplest case, 

k, = R,”//A for the maximum growth rate, the rate of 

descent i s  V = 0 ( R:’ / A )  . The characteristic 

diffusion velocity of the scale A would normally be 2 / A  , so 

the instability has increased the overall diffusion rate across the f ie ld by the factor 

. The region of maximum instability i s  so broad, however, (see 

L - c) (R, ’/ 2 /A) 
Fig. 7) that the instabiiity is effective ai i  the way oui i o  

for which V = 0 ( Ry y\ /A! 
h~ - 

A simple formal example i s  worked out i n  Appendix VI1 to illustrate the 

physical process of the flow of the gas across the f ie ld when k, > > kp . 
In the example the magnetic lines of force are held fixed while the gas diffuses 
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steadily across them, as outlined above. The process i s  diffusion limited under the 

circumstances which apply to k, = 0 ( R:' / ) so that 

the inertial terms for the 

straight forward, leading 

unstable mode, the result i s  

motion can be neglected, The solution of the problem i s  

to the mean vertical velocity of the order of 

. Then putting A k, 2 1 for the most 

V =  , as stated from the 

qua I itative considerations above. 

In section IV the magnetic Reynolds number was estimated to be of the order 

4 
10 . It follows that the dynamical instability enhances the expected rate a t  which the 

gas can move across, and separate from, the f ie ld by a factor l o2  - 10 . The magnetic 

field, which might free itself from a gas cloud of 10 pc dimensions in lo8 -10 years 

by ambipolar diffusion alone, may under the combined effects of ambipolar diffusion 

and dynamical instability, free itself as rapidly as the instability can grow and the 

4 

9 

8 cloud can collapse into clumps, some lo7 -10 yrs. The f ie ld may be enormously 

reduced in  the final gas cloud, which may help to explain why the gas of v h  ich 

s tars  are composed has so l i t t le  f ie ld threading it, as compared to the interstellar gas. 

VI. Summary and Conclusion 

Several aspects of the general magnetic f ie ld  and cosmic ray instability of the 

intentellar medium have been illustrated. The general results of the calculations given 

here and in  I are that the interstellar gas collects into clouds in  times of the order of 

free fa l l  time of some 10 - 10 yrs., whereas self-gravitation 7 8  

alone would not accomplish the observed clumpin5 into clouds. The theoretically 

predicted spacing of clouds along the f ie ld i s  of the same general order as A , the 

scale height of the gas distribution, 



I 

. 
4 

' *  

I ?  , -  
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The instability grows vigorously for a l l  wavelengths across the field 

from 0 ( A/ f?La) 
typical values of A and R, . The result i s  continual turbulence and 

fragmentation of the interstellar clouds, indicating that the interstellar g a s  clouds are 

to 0 ( A )  , which i s  1 - IO0 pc for 

i n  a vigorous and ragged dynamical state until they become sufficiently compact 

that self-gravitation becomes an important stabilizing force. 

The instability of the gas over small scales perpendicular to the magnetic 

f ield leads to rapid ambipolar diffusion of the gas across the field. In this way the 

gas is  able to move rapidly downward across the magnetic f ie ld by sliding to the 

lowest point on each line of force encountered during the rapid diffusion across the 

lines of force, We suggest this effect may contribute to freeing the field from the 

gas prior to condensation of the gas into stars. 

The author wishes to thank Dr. S. Chandrasekhar and Dr. 1. Lerche for 

stimulating discussion of many of the ideas and problems treated in  this paper. 
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Appendix 1. The Magnetic Field Between Slabs of G a s  l 

Consider the magnetic f ield E = v# , o '#s  o i n  

the region - b < < + & 2 - > 0 subject to the boundary 

conditions that 0 on 2 = 0  , @ = a  a t  

1 

2 =  +a3 , and B) = B ( Z )  (given by (1)) a t  7 = z t  b 

Then, in terms of solutions of v y  =o , write 

with the understanding that 

w i l l  vanish a t  Z . The transform f (k )  i s  evaluated from the re- 

quirement that Bj = B(2) a t  )* = * b yielding 

f (k) must be an odd function of k SO that B, 

The resulting integrals for sj and 6, are readily evaluated by closing 

the contour around the upper half plane and applyi ng Cauchy's theorem, 

-22- 
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4 

I 

The change in field energy i s  

per unit length in the X -direction, where 

i s  the energy of 

The easiest way 

the initial distribution in  - b < 7 < .C b , given by (1). 

to perform the integration i s  to go back to (11). Then 

+oJ t- +b f 



after noting that the integration over 3 gives Zx b ( k ' +  k') 

that .f (-k) = - fc k) . The integral of 6: gives 

and 

The integrands have poles at  A = f anda t  k b = i (nd$)n 

as a consequence of the denominator of .( '( k) . The residues of 

a re I+ I d i  (8, '+ BRa) 

and 

respectively. Then, c l  osing the contour around the upper half of the complex 

plane and using Cauchy's theorem, the integral over 

remaing integration over y 
k can be evaluated. The 

i s  then elementary, the final result being 

- 24- 
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1 

for the decrease of the f ie ld energy below the in i t ia l  value Ee * 

The general behavior of AE i s  readily established. Beginning with 

a narrow gap between the slabs of gas, we have 

ascending powers of b/A yields 

b / A  < < 1. Expanding i n  

so that A E / E, 
f ie ld i s  freed. 

increases as the square of the gap width over which the 

It i s  readily apparent that the individual terms, including the summations, 

have singularities a t  b / A  = ( h + + r  . The complete 

expression remains finite however, as can be demonstrated by writing 

b / A  and carrying out the expansion i n  ascending 

powers of € . The terms of order d / d  and i / g 2  vanish identically. 

Finally, in  the l i m i t  of very large b/A i t  i s  possible to do 

the sum by noting that the major contribution i s  from 

b/n A 
n in  the vicinity of 

. We know that 4 i s  a smoothly varying function of 

, so for simplicity suppose that b/A = m tC where b h  
-25- 



m i s  a large integer. Then let YI = m + ~  , We have 

where the sum i s  now over /cc. . Examination of the terms i n  the vicinity of 

/Cc =O shows that the terms in  the sum which are o ( m )  are 

(1 + 1/9 + 1/25 + 1/49 + ...), yielding 

identically, and the terms o(d /~ )  yield the divergent series ... + 1/4 + 1/4 f 1/4 .... 
It follows, then, that A t & in the l imi t  of large b/A . 
The final f ie ld energy i s  small compared to the in i t ia l  energy because of the unlimited 

expansion which has taken place. The asymptotic approach of A e to & 
i s  rather slow with increasing , as may be seen from Fig. 3 and from the 

fact that even wi th  b / A  4 x we have A G  equal only 

to 0.61 . 

IYI na/4 , The terms o(d) vanish 

b/A 

Finally, i t  i s  of interest to consider what stresses are exerted on the gas, 

so that we may have some idea whether the gas would be raised or lowered if i t  were 

released. The magnetic force i n  the upward direction i s  

-26- 
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~~ ~ ~ 

dynes/cm 2 on each face of the 90s s!abs. The total downward force on the gas 

2 
per cm 

pressure 

of face i s  the difference between the gravitational force and the total 

gradient i n  the gas, 

i f  we suppose that the pressure increased in  proportion to the 

density during the compression, If the upward magnetic force 

the net downward force, 

If F* ( 2 )  < F G  ( 2 )  9 the gas w i l l  move downward. In either case the 

energy of the system w i l l  decrease further. In the simplest case suppose that 

as a consequence of the gas being very cold ' L $ 4 
Then the only pressure i s  magnetic, and = h'/ 3 . It follows that 

s power of the 

exceeds 5 ( Z ) 
6 ( 2 )  , the gas w i l l  tend to move upward when released. 

a < < b 
2 

and 
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Now consider whether the magnetic or gravitational forces dominate. For 

it < 4  b , A the exponential can be put equal to 1 in the sum. 

Then when b < < A each term in the sum can be expanded in descending 

powers of n A / b , yielding 

h e n  b > >  A suppose that b 6 A where rn i s  

an integer. Then write fi mt- , The sum can be written 

7 
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The individual terms in the first sum are a l l  O( 4> , so the sum .is O b )  . 
The first Zm terms in  the second sum are O( 4/m) . Thereafter the in- 

dividual terms decline as 

braces i s  O( m) . It follows that 

4 

d /  A a , so that the whole quantity i n  curly 

Intermediate values such as b = n  A , also give 

. Thus for small z the gas moves downward when released, 5 c G 
for a l l  values of b/A . 

The situation i s  rather different when 2 > > b, A . if 

b C 4  A 
in  each term, 

then the sum is  negligible because of the exponential factor 

If b > >  A f p u t  b = ~ R A  where rv\ i s  a large 

positive integer. The exponential factors in  the series are a l l  larger than the factor 

exp( - Z ic / A  ) f o r  Y I S ~  4 ~vr , These terms 

are also positive. Ihe t i rs i  ierm i i7 the series &minates a l l  the others in  the l imi t  

of large 2 so that F G  > F d  . For intermediate values, 

-I r .  

such as b = P A  the same result i s  obtained. Hence at 

large 2 the material moves upward when released. 
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At intermediate values of ( z A )  i t  i s  readily shown that 

Fs > F G  i f  b < <  A , and G r f ,  i f  b > >  A , 

as one would expect: When 

sheet that the local field cannot support i t  without sagging. 

b i s  large, there i s  so much mass packed into each 

. 

. 
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Appendix II. Instability i n  the Absence of Cosmic Rays 

A. General Equations: Consider the stability of the equilibrium (1) in  the presence 

of small perturbations ,V H.r b , g p  and S p  . The 

linearized equation for conservation of mass i s  

SP 
SO that i f  the pressure perturbation i s  related to the density perturbation 

S P / P  = S P / P  then “p  i s  given by 

5/.) by A 

The hydromagnetic equation for the field perturbations are 



assuming that the lines of force are frozen into the gas. The equations of motion are 

Eliminate - b first by taking the derivative of the equations of motion 

with respect to time. The result can be written 

(1110) 

. 

( I l l  1) 
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. 
where 

(1112) 

(1113) 

Next  operate on (I1 9) with 

( I 1  9) to eliminate V, and Vx , respectively. The result i s  

Q, and on ( I 1  10) with 9 1  , using (II IO) and 
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(1115) 

(1116) 

1 

The final step i s  to operate on (I1 11) with Q4  qz - 7 u 

and eliminate v, and V ,  with the aid of (I1 15) and ( I 1  16). 
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I . 
We are interested i n  solutions of the form 

(1118) 

a 
with the boundary conditions that v,= OA = 0 and that the perturbation be bounded,'in 

some suitable sense, as 't 4 00 

It i s  easily shown from (I1 17) that only i f  L = A = 
I 

2 ( u  '+ V A L ) /  3 can the modes for * k, be paired to give V i  = O  

a t  2 =O. For i f  L # I;'! , then )/T has an imaginary part whose 

sign i s  determined by the sign of k 2 . Such individual modes do not then give 

I 
" 3  = 0 a t  2 = 0. The analysis is  much more complicated, requiring a sum 

over a continuous spectrum in  order to satisfy the boundary condition. For the present 

purposes it i s  sufficient to put L = A , noting that for this simple mode the 

remains bounded as z --j + 00 kinetic energy density 3 /3 V I 

as does the f ield energy density,with the particle flux 

1 .  

2 

going to zero as P V  
2 - a  . The boundary condition v2 = 0 a t  2 = 0 i s  then 

satisfied by the pair of modes k k2 which result. 

Substituting (I1 18) into (I1 17) yields the dispersion relation, which can 

be put into the form 



2 

where we have written 4 = 2 O( i: a on the lef t  hand side of the 

equation, and I ( x ) = _  o ( m ' x  f 3ocYt2%4c4  - 2  
I. 

The quantity Q d  - - 't2 + ( 7 d 2 +  G a ) k x  + h1ky2 i s  

the propagator for fast mode hydromagnetic waves. It i s  positive and nonvanishing 

for the waves wi th  which we are concerned here. We have chosen to write the 

dispersion relation in  the form (I1 19) because the lef t  hand side alone i s  the basic 

dispersion relation for k, alone ( k, = k = 0 ). The effects of 

k, and k, appear on the right hand side. 

the 
1 

In the simplest case u ' r= k, = k = 0 

dispersion relation reduces to 

a 
(1120) 

The unstable root ( T 7 0 ) i s  T = T, where 

It i s  readily shown that i / ~ ~ ~  i s  positive for a l l  k7I 7 O , and i s  

a monotonically increasing function of k7 , with the value 
t 

a 
I/-t.'= k7% = ( j / A )  (k, A ) 2  for Ak, < <  1, and 

approaching asymptotically to the l imi t  h'/A = 3 / A  as Ak, 

becomes large. We recognize (A/ 3 )  " 
acterizes the time i n  which the instability grows by a factor of 

wavelengths are the most unstable, subject only to limitations of diffusion, viscosity, 

as the free fal l  time, which char- 

e . The shortest 
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. 
etc. which have been ignored here. 

It i s  evident from inspection of ( I 1  20) and ( I 1  21) that the existence 

and strength of the instability depends upon the amount by which the last term in  

(I I 20) i s  less than zero. The larger i s  k~' % ' / A  the more rapid the 

growth rate. Thus, i t  i s  evident a t  once that the first term on the right hand side 

of (I1 19) tends to reduce the instability, because when transposed to the lef t  side, 

i t  diminishes the negative last term there, This property of the dispersion relation w i l l  

be exploited throughout the discussions of the effects of ).x , k: , and 
a 

u 2  which follow. 

Suppose now that kx , k g  -f O , but u remains 

zero. Then with 2 c i u L z  v,' # 0 the dispersion 

relation i s  

It i s  evident that the larger i s  

the inhibiting effects of ki may be off set by making k, large. In the l imi t  

of large 

recovered, The vertical wave number 

k,' , the less rapidly the instability grows, but 

k, the right hand side i s  reduced exactly to zero so that (I1 21) i s  

k 2  then has no inhibiting effect. 

Note also that i n  this cold gas the horizontal wave number k, perpendicular 

to the magnetic f ie ld has an effect only i f  k: i s  nonvanishing. 

So far our study of a cold gas has shown that large k, and k2 give 

the most rapid growth of the instability, in  a period comparable to the free fal l  over 

one scale height. We must not be misled by this simple case, however, to conclude that 
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the instability i s  a small-scale phenomenon in  the galactic field. Introduction of even 

a very modest temperature drastically alters the situation. Suppose that 

but kz and C) are nonvanishing, Then (II 19) can be written 

k z  = 0, 
a 

(1123) 

Then ' /Z  a i s  positive only if the right hand side i s  greater than zero, 

(1124) 

-38- 

& 
Note that kr and k: contribute equally to the right hand side of the in- 

equality. If the inequality i s  satisfied a t  all, i t  i s  satisfied as k9 , k, 90 

to zero. In order that the inequality be satisfied a t  all, then, we obtain the basic 

criterion (see paper I) that (5  t ( 1 t o( - 1 > r~ p / 2  for 

instability. Increasing kl and k t  increases the right hand side of the 

inequality, making i t  more dif f icult  to satisfy, 

not satisfied in the l imit of large k7 + k -z 

i n  a cold gas, increasing 

It i s  evident that the inequality i s  

a 
, It w i l l  be remembered that 

2 

k7* enhanced the instability. We now find, with 

a U = f O  , that both k7 and k: can, if too large, produce stability. 

It i s  evident that if (4 + M )( 1 .+ oi ->) > o( R/Z i s  

satisfied, then there i s  instability, but the instability occurs only for wave numbers 

sufficiently small that 



. 

1 

I 
* 

a 
For small gas temperature ( u 4 4 \JA , o( >> d )  this i s  

I , 

Thus, only for very low gas temperature can the horizontal wave length of the 

instability be small compared to the scale height A . 
It i s  evident, also, that the wavelength of the instabi l i t y  w i l l  never be 

very large compared to the scale height 

(I1 23) vanishes with vanishing kr 

wavelengths w i l l  be for k7 of the order of 

A 
. Altogether, the most unstable 

, because the right hand side of 

2 

d//l . 
Now suppose the vertical wave number ke i s  zero, but that u L  

-i 
and k do not vanish, What i s  the effect of kx ? When k t ’ z  3 , 

instability occurs i f  and only i f  2 a > 1 ( k,) 

Then recall that, for a given 

(I1 19), the larger i s  the growth rate of the instability. Inspection of  the coefficient 

of kx 
possible exception of I. Instability requires that 

2 
kf , the more positive the right hand side of 

a 
shows that a l l  the terms i n  the curly braces are positive, with the 

2 o( a 7 1 . Hence I c a n  be 

negative, as for instance i f  o( i s  large and A x k r a  4 4 /P  - 3  
But under most unstable circumstances i t  would appear that i s  positive, or a t  

least not so negative as to cause the curly braces to become negative. Hence, for a 

1 
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given k; , increasing k: increases the instability rate. This was the 

same effect as obtained for the cold gas with k, $ 0 

For the general situation in  which neither k,' , kit' I u i s  zero, what 

L 
i s  the effect of k,' and k, ? The right hand side of (I1 19) can be written as 

The first term represents a decrease of the instability with increasing 

evident too that increasing 

k ~ '  . It i s  

in the first term offsets the stabilizing effect of k: 
L k,Z . The Stabilizing effect of k c  vanishes i n  the l imi t  of large k r  . 

What i s  more, the second term, represented by the curly braces, i s  generally positive, 

as discussed above, so that increasing 

merely null ifying the stabilizing effects of 

as written above, increases monotonically with 

be positive), approaching the asymptotic value 

k $  enhances the instability beyond 

k,Z , The right hand side of (I! 19), 

kza (assuming the curly braces to 

i n  the l imi t  of large k x  . The growth rate )/T i s  then entirely independent of 
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a k t  . In the l i m i t  of large k, (I1 19) reduces to 

l a  

(1125) 

i s  that the quantity in the square a The criterion for an unstable root I/t >o 
brackets in  the last term be greater than zero, 

a 
This requirement i s  less stringent than (I1 24) obtained for k, = 8 

(1126) 

we would expect from the destabilizing effect of k x  . 
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Appendix Ill. Instability with Cosmic Rays and a Weak Field 

Suppose that the magnetic f ield i s  sufficiently weak that its stresses may be 

neglected, but there i s  now a significant cosmic ray pressure. The magnetic f ie ld ties 

the cosmic ray gas to the thermal gas. Consider first the simple degenerate case in 

which the thermal gas is cold. For the equilibrium state write the cosmic ray gas 

where p i s  a dimensionless pressure P as 

constant and u i s  a constunt characteristic sound velocity. It follows that 

a P u p  

Conservation of mass i n  the perturbed state i s  described by (I1 1). In place of (I1 2) 

we write (see I) 

which states that the cosmic ray pressure does not vary along the magnetic lines of 

force.* The momentum equations are 

. 

( 1 1 1  1) 

(Ill 2) 

(Ill 3) 

"Xis presupposes that , for i f  k p  were 
small the suprathermal mode (Parker, 1965) would come into play, and we are not interested 
i n  that complication. 

k, > ( kz L.C k;)''% cl / c 
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( I l l  4) 

( 1 1 1  5) 

Differentiate (Ill 3) - ( 1 1 1  5) with respect to 

Then differentiate (I1 1) twice with respect to t and eliminate va , 

obtaining an equation in  sp and va . Use the equation for 

to eliminate 6p , obtaining finally, 

and use ( 1 1 1  2) to eliminate s . 
"7 

(Ill 6) 

Then suppose that v;t i s  of the form 

It follows that 

F (?) e X P ~ / T  5 k x  t b 2 1 . 

so that f ( ? )  i s  an arbitrary function, subject only to such physical requirements that 

i t  be finite, single valued, etc. The instability rate i s  

( 1 1 1  7) 
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( 1 1 1  8) 

where k ' = k,' j k7 ' . The system i s  unstable for a l l  k, and 

k7 , the rate increasing monotonically with both k, and k2 
It i s  interesting to note that i f  9 = 3 ( 2 )  , instead of being constant 

as assumed in  the present problem, a l l  the equations (Ill 1 )  - (Ill 5)  s t i l l  apply. In place of 

( 1 1 1  6) one obtains 

Again we find that f (  t )  i s  arbitrary, and in  place of (Ill 8) 

(Ill 9) 

( 1 1 1  10) 

Since (d . /  4 ) d 3 / d 3 
galaxy the effect of 

instability i s  not removed by 

rate s t i l l  increases monotonically with k x  and k, , and for the more unstable 

modes, the effect of 

i s  generally a positive quantity near the disk of the 

' 4  1 / d  2 i s  to slow the instability somewhat. But the 

for any wave numbers. The growth d 3 /d il 

d 3 / A  2 becomes small without limit. 

Now consider the case that the gas i s  not cold. This removes the degeneracy 

i n  the E! -dependence. Then the pressure gradient of the thermal gas v '6p must 

be added to the right hand side of (Ill 3) - ( 1 1 1  5), with 

i s  then to differentiate the momentum equations with respect to 

( I l l  2) to eliminate Sp , 6p , and S p  , respectively. Note that 3 = Z( l j / )G ; /A .  

S P  given by ( I 1  2). The procedure 

, using (I1 l ) ,  ( I 1  2), and t 
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. Then operate on the equation for 3 'L v, / at  a with 

a 3yaiA- 2"t  aL/+ 

i> ="r /o t  to eliminate vr . The velocity Qx may be eliminated 

and use the equation for 
9 

.I from the equation for 3 i n  a similar way, yielding the two equations 

Then operate on the equation for a L V L  / 3 t 
, obtaining 

with 

Assuming that V z  

both 

i s  of the form ( I 1  18) so that the energy density i s  finite a t  

3, = f 00 , the dispersion relation i s  readily shown to be 

A' 
1 - t (k, ' t  k,'t k,'+-!- 

7 4  T 2  
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This is  the same basic form as was dealt with in Appendix Ii. There i s  

an unstable root 4 / ~  7 O i f  and only i f  the quantity i n  square 

brackets in the last term is  greater than zero. Since p13'  )O this 

i s  equivalent to i + p  7 " y  

Note that k,'j k7 here plays the same role as kps for 

a cold gas i n  a horizontal magnetic f ield without cosmic rays. The growth rate i s  a 

monotonically increasing function of , The effect of kg? 
i s  to slow the growth rate, but this effect i s  removed in  the l imit as 

becomes large. For k,'+ k?' 4 C k: t L/A a. , the growth 

rate i s  

kra+ k) 
a kxa + k? 

When k,'+ kra ,, k,' + / / A a  , the growth rate 

increases to 

which i s  independent of k, , $ ,and ka ' 

c 
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Appendix IV. Stability of Alternate Perpendicular Lcyers of 

Magnetic Field 
I 
I *  

Consider a cold atmosphere without cosmic rays supported by a horizontal .. 
I I magnetic f ield 

where n = 0,1, 2, ..... Write B ' 'c 4r' 4' , where 4 
i s  a constant Alfven speed. The f ield density B i s  given by (1). Ignore possible 

rapid small-scale instability a t  the discontinuities 2 = 0 a between 

L '  

layers of field. 

. Conservation of mass i s  described by ( I 1  1) again. Equations (I1 3) - (I1 7) 

with 5 p = 0 describe the f ield and the motion in  regions where 

B = Q) B W  . Where u.rx e 8 (2)  we have 
h 

t !IV 3) 



The boundary conditions a t  2 z fi a are that vq i s  

continuous and the magnetic pressure i s  continuous. Hence 

on one side of 2 = n a must equal Ib, / J b, I respective I y 

on the other side. Since k= , k' ~ and 7 must be the same in  each layer 

i n  order that these boundary conditions be satisfied, i t  i s  evident that 

also be the same because T i s  a monotonically decreasing function of kg . 
That i s  to say, k i s  a single valued function of . 

I b, 
~ I b, I 

k must 

It i s  known from I and from Appendix II that the individual layers of f ie ld 

are most unstable when k E .p 0 i n  (I1 18). The growth rate I/ i s  then 

independent of the component of the horizontal wave number which i s  perpendicular to 

the equilibrium field 

rate I /  7 

8 f 1 , so the problem is  greatly simplified. The growth 

i s  then a monotonically increasing function of the wave number parallel 

to B (e) . The fastest growing mode i s  that for which kx 0 k7 P k / z  h 
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* 

throughout. It is evident from (I1 20) that the growth rate i s  

for the mode with maximum growth rate. 
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Appendix V. Force Between Elements of G a s  Suspended On  

a Horizontal Magnetic Field 

Consider the force exerted on a small element of gas suspended on a 

large-scale magnetic f ie ld when a second small element i s  suspended a t  an arbitrary 

position in  the same field. Use the geometry shown in  Fig. 1, with a gravitational 

f ie ld 3 i n  the negative 3 -direction and the large scale magnetic f ie ld  

f3 i n  the positive y -direction. It i s  sufficient for the present purposes 

to suppose that the large-scale magnetic f ie ld i s  pervaded by a tenuous plasma 

which i s  an excellent conductor of electricity but whose pressure and weight are so 

slight as to have no sensible dynamical effects on the magnetic field. Hence 

may be taken as a uniform magnetic f ie ld with infinite scale height. Each of the 

two small elements of  gas suspended in  

l ight compared to their small dimensions that the distortion 

large-scale f ie ld 

B wi l l  be taken to be sufficiently 

of the 68 
m 

I3 i s  small everywhere in  the field. SI 

Now the calculation may proceed directly from the hydromagnetic 

equations. But i t  i s  much easier, and formaIly equivalent, in  this particular case, 

to deal directly with the currents ( induced by the weight of the gas). The current 

system i s  diagrammed in  Fig. 8. The current 

of length 2 a 

gas. The Lorentz force Z a Id / c of this current supports the 

ra , shown by the heavy segment 

across the middle, represents the current through the element of 

WT weight 

The current must stream away from the ends of the element of gas but there can be no 

Lorentz force exerted on the tenuous plasma f i l l i ng  the space. Hence the current 
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must stream away along the magnetic lines of force, as sketched in  Fig. 8. In the 

present case we suppose that the current flows along the lines of force a l l  the way 

to y = & m  
It i s  evident from Maxwell’s equations that VX @ = 0 

everywhere except a t  the location of the currents. Hence the f ie ld has the same 

configumtion outside the currents as in  a vacuum, and the f ie ld may be computed 

from the currents by the same method as i n  a vacuum. The magnetic f ield of a current 

1 I: (E 9 a t  a point E i s  given by the Biot-Savart law 
MII 

A g ( c )  ‘z $ j d . I C r ) x ( r  - r ’ )  
/E- J 3  

where dJ i s  an element of length along the current 1 . Place the origin 

of the coordinates a t  the center of the element of gas, as shown in  Fig. 8. Then i t  i s  

readily shown, after going through the a gebra, that the f ie ld 

produced by the current system shown in  Fig. 8 i s  

A B  (E )  

(? 2) 
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where 

\ /a  
51b2 = [ ( ? L d + 7 2 + 2 ’ ]  , 

The terms (21, a / + / r a  and 

(2 IA a / < )  2 / r a  are the contribution of the current segment 

2 a 1, . The other terms are from the currents flowing along the lines of force. 

The first l ine of each f o n u l q  for the components of 

idealized current system shown in  Fig. 8. The approximate forms are for either or 

A 8  i s  exact for the - 
both 3c or 2 large compared to a , When X < <  a f  
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I *  

' we have A$, 2 O . The formula for 4.8, i s  unchanged, and 

Now consider what effect the perturbation a 8 has on the 

equilibrium of another small element of gas of mass suspended elsewhere 

on the field. The weight of i s  supported in equilibrium by the large-scale 

field 6 e . The perturbation f ie ld A B  produced by 9Ul, introduces 

an addition force. To calculate the force on qr caused by A B  note that 

the currents flowing to and from the ends of 

lines of force, so there i s  no Lorentz force exerted on them by 

only force i s  F = 2 a - 1C, x A /c , where 

- 2  

Lz1 

@ L 
q1 

-2 ML 

Lu 

pu)II wi l l  flow along the perturbed 

AB . The 
Ms 

I = e  . z Y  r n q / Z a B  i s  the supporting current through 

433 ;L . Obviously F;; =o and 

r 
The vertical component of the force, r z  , i s  of i i i i i e  present interssf. 

The elements of gas are threaded by the field and hence construined to slide along the 

lines of force. The current T 2 adjusts itself so that the Lorentz force in  the total 

horizontal f ield 8 t AB, supports the weight of the gas. 
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The force 5 causes the element of gas to slide along 

the magnetic lines of force, either toward or away from 91, . TO illustrate 

the general form of F;; 
i s  on a line of force passing near 

lines of force between 

the lines through Sn, . In the first instance, 

consider the two cases that 4ty)z , a t  ( 2 7 , 2 ), 

@ d  , as compared to the distance along the 

m g  and @a , or mL i s  on a line remote from 

> >  K , e # a n d  7 

so that 

a 
The force i s  thusattractive i f  2 a > x a and repulsive i f  ea 4 . 
The force i s  undiminished by the distance 

The force falls off inversely as the square of the separation 

of the magnetic lines of force on which the elements slide. 

between 933, and m 
Yr 

7 
(? 3 "> 

1. 
In the second instance a =, 7 a L L 2 2 

we have 

so that 
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I *  

. 
l The force i s  attractive i f  2 a > 2 a/ 2 and repulsive i f  t a 4 X a/Z . 

If were threaded on a line of 7 .  The force i s  directly proportional to 

force directly above the line through m4 , then ?L = 0 and the force i s  

The gravitational force between m d  and i s  G m r m z  )/z3 
I 

b along the lines of force, indicating that F;: i s  larger by the factor 

than se I f gravitation. 

It i s  evident from (V 8) that the force in  x 7 Z > ‘ / z  
l i s  small, and it i s  evident from (V 9) that the force in  

i s  large. 7 i s  repulsive when 
7 i s  attractive when 

F a >  P t ,  d - 2  
We would expect, then, that i n  passing from small to large 7 alonga line in  

X k .  z > yL/z  , that the force must pass through 

zero. It i s  readily shown, by equating the right hand side of (V 5) to zero, that the 

force 5 vanishes a t  

Y 

The equilibrium position at  this value of y i s  unstable, of course. 

Finally, i f  the two elements of gas are exactly on the same lines of force, 
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then x =  2 = 0  and i t  follows from (V 6) that 

, approaching the l i m i t  7 The force i s  attractive for a l l  values of 

as 2 becomes large compared 

to a . 
Altogether i t  i s  evident that elements of gas w i l l  tend to group in  vertical 

columns, with neighboring columns moving apart. It i s  evident too that each individual 

element w i l l  tend to shear apart as a consequence of the mutual repulsion of its 

opposite ends. 
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Appendix VI. Instability i n  the Presence of Diffusion 

0 

. 
The simplest nontrivial case of the l imiting effect of diffusion on the 

horizontal transverse wave number 

magnetic field, given by (1) with u =: 0 . In the absence of dissipation 

this case gives a monotonic increase of the growth rate with increasing 

if kz # 0 

l imiting of k by diffusive dissipation. 

k, i s  a cold gas suspended in  a horizontal 

k 1L 

(see (11 22)). Hence i t  permits the demonstration of the 

Suppose, then, that the system i s  dissipative because of resistivity in  the 

medium. The equations of motion are unaffected, so that (I1 1) and ( I 1  6) - ( I 1  $) 

are applicable, with 

The equations ( I 1  3) - (11 5)  for the magnetic f ield must be modified by replacing 

= 0 in the present case that the gas i s  cold. 

%/at by a/aT = 3 / 5 t  - 2 0' where 

is  the effective diffusion coefficient. In the simplest case T 

2" e 'L/47T 6 where 6 i s  the electrical conductivity. The 

operator 3 / a  T can be approximated as b/3t - 2 a+/oxL 

in  the present instance, since we shall be interested only in  the case that the wave 

number k, i s  large compared to k2 , ka ,and i / A  . 
The motion of the lines of force through the f lu id as a consequence of 

ambipolar diffusion can be treated approximately with the same equations, i f  we 

identify with the ambipolar diffusion coefficient (see Section ih') ifisfetid 

of wi th ca/47Td 

Differentiate (I1 6) and (I1 7) with respect to T 
use the modified ( I 1  3) to ( I 1  5) to eliminate the fieId,obtaining 

and 
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Then operate on ( I 1  8) wi th  

components can be eliminated, and with a/ b t so that 

can be eliminated through the use of ( I 1  1). The result can be written 

?/ "3 T so that the magnetic field 

6P 

Then operate on (VI 3) with 2/ so that V+ can be eliminated, 

andwith aa/a73t - vA a 9, so that V, 

can be eliminated. The resulting equation for 

a 

can be written 

8 
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Suppose that V t  i s  of the form (I1 18). Then the dispersion 

relation can be written 

where A is  the characteristic scale height L$ 7 8  and 

is the propagator for damped A 

R c P > o .  
fven waves. For the cases in which we sha 

(VI 6) 

I be interested 
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Consider what mode i s  most unstable for a given k7 and k 2  . 
We know from the discussion in  Appendix I I  that large values of 

instability and that the most unstable &? i s  of the order of l/A i f  the 

k ,  suppress the 

thermal motions are included i n  the calculation. The discussion showed also that 

increasing k, offset the stabilizing influence of k 2 , with the growth rate 

given by 

when k A  i s  large. Here 1/7. i s  the growth rate 

for k,  =o and 

The important point i s  that, without diffusion the growth rate increases 

asymptotically to 1/7, as k, + 00 . It i s  evident that 

inclusion of diffusion must slow the instability a t  large 

i s  an intermediate value of 

7 

k ,  , indicating that there 

k, for which the growth rate i s  a maximum. 

The case of interest i s  for a relatively small diffusion coefficient 

y d L  k A  ) k 2 T  . Then diffusion does not have much effect 

kp . Butwhen unti l  k x  i s  very large compared to k 7 '  
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L 

. 

kL' k, , k2 I the growth rate i s  increasing only very slowly 

with k x  , as given by (VI 7), so the damping effect of diffusion becomes important 

in determining the sign of d - t / J  k x  even when t c  44  l / c r  
The maximum in 

s t i l l  small. Replacing '7 by T- in a l l  terms involving \ or 

f./T occurs in (VI 5) when the terms in y k c  a re 

1 /  k," i t  i s  readily shown that 

The maximum growth rate occurs for the value of k x  given by 

(VI 10) 

(VI 11) 

Hence the most unstable wave number k ,  i s  large compared to k 2  because 

T i s  small. In terms of the effective magnetic Reynolds number 

R, = 4/ k ,  2 ,q, 7 , it isevident that k, - - o ( k ,  R , 3  . 
The characteristic diffusion rate d./t i s  then, 

(VI 12) 
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A or ! / k s  It i s  faster by R,,, than diffusion over the scale . '/a 

This i s  an enormous enhancement of the diffusion of gas across the f ie ld lines. The 

enhancement i s  of the same order as the enhancement i n  the v ic in i ty of a neutral 

point (see, for instance, Parker, 1963), which i s  also by the factor R? . 
The next step i n  the development would be to include the thermal 

motions U of the gas. It i s  readily shown that the general result i s  the same 

as for c) = 0 without goint through the very tedious calculation from the 

complete set of equations. In the absence of diffusion the dispersion relation i s  just 

(I1 19). The most unstable k7 is c> ( 4 /A) . The vertical wave number 

k, 
k, 

tends to decrease the instability rate but i t  i s  readily shown that increasing 

restores the growth rate to the value for 

3 = 0 e So put 

k, P 0 . This much i s  

the same as when k, = 0 , since there i s  no need 

to re-investigate its effect. The remaining dispersion equation can be written, up to 

terms O ( k 7 y  kx ') , as 

1 1 d k '  
- 7' +t;. M 4  n 4 c  

- -2 I - -  

% 

where the coefficients F/2 , l / m  ,and i/fi a are a l l  

positive quantities, defined by 

L 

(VI 14) 
1 = (?d.tv,')(k;+i.)+ u [?k,'+ @-?)/A 1 
1' 74 = +  ) 

~ -~ 
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(VI 15) 
I 

The right hand side of the equation i s  small, 0 ( k, ’/ kr ‘) 
2 a 

so i t  i s  sufficient to replace i/ ZC: i n  h by d / T i  , where 

VT ’ i s  the root 

i n  the l imi t  as k, 0 . It follows, then, that 

Comparing (VI 18) with (VI 7) i t  may be seen that 

asymptotically to the l imiting value as 

approach i s  the same as before, so that when diffusion i s  introduced, i t  i s  evident that 

the wavenumber for maximum growth rate i s  

1/7 again approaches 

k x  -a . The rate of 

as in the previous case. The diffusion i s  enhanced by the square root of the magnetic 

(VI 17) 

(VI 18) 

(VI 19) 

Reynolds number again. 
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Appendix VII. Enhanced Diffusion as a Consequence of Instability 

Consider the motion of a gas threaded by the fixed lines of force of the 

static magnetic field 

r LL 

where 2 i s  the vertical dimension and 8 e represents a uniform hori- 

zontal field. The overall f ie ld configuration i s  sketched i n  Fig. 7. The gas i s  con- 

strained to move along the magnetic lines of force except for diffusion across the lines 

of force, represented by the coefficient cm /sec. In the present case the gas 

density p and pressure p are assumed to vary much more rapidly with 

horizontal distance 3c across the f ie ld than with 

diffusion i s  significant only i n  the 

isothermal and i t s  motion i s  steady and limited by diffusion, inertia may be neglected 

and the motion across the f ield i s  given by 

-2 

2 
yI 

or d , so that Y 
x -direction. Assuming that the gas i s  

N 
p v x  = - 7 E 

to a first approximation*. Motion along the lines of force i s  principally i n  the 

(VI1 1) 

(VI1 2) 

~ ~~ ~ 

otl purely formal grounds * 
dx/dt = - Vp 
Write 8 ie: pXl( and 

. 
7 PX 8"s , vr  i& - ?&/at + 9# where 

such K a t  
Eliminate WfL 
Y + = ( $ - W d t - P p / p ) y & = t  @n/Ba)@# ( a d / b t - y + )  , where $ i s  
the local Alfven speed, 

y / a t  - v# represents the transverse motion of the lines of force, 

$b i s  a scalar function of position 
represents externally impressed motion of the fluid. c p f i ~ / ~  a 

from the momentum equation, writ ing the result i n  the form 

o/ (  4"p) 1/L . The last term, involving 



a. . Thenif  p /”’Q 
i s  large compared 

to the gravitational and inertial terms as a consequence of rapid variation of 
w over 3e w u “T/I/A ‘L = 9 , the result i s  just (VI1 2) with n d / 4  

A similar derivation of (VI1 2) can be given for ambipolar diffusion. 

b 

-direction, assuming that E < 1, so that, neglecting inertia, the momentum Y 
balance i s  

where - 6 5 
Put 

i s  the component of gravity i n  the direction along the l i n e s  of force. 

’ . The motion i n  the f -direction i s  P =f- 

Finally, i f  we assume that the system i s  uniform in  the E! -direction 

, conservation of matter 

requires that 

It i s  evident that (VI1 3) determines p i n  ieriris of the give:: 

function € . To carry out the indicated integration note that the magnetic 

lines of force i n  any plane 

of curves 

z = constant are given by the one parameter family 

(VI1 3) 

(VI1 5) 
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(VI1 6) * 

where 

y =yo C X )  
along the lines of force. Hence upon integration of (VI1 3) the result i s  

za i s  the lowest point along the particular line of force, occurring a t  

. Equation (VI1 3) states that the gas i s  i n  hydrostatic equilibrium 

where 

density a t  the lowest point along the l ine of force through 

The next step i s  to calculate 

2 - 2, i s  given by (VI1 6) and /Q ( X ,  y m  ) represents the 

. ( X  

\/x . This i s  accomplished using (VI1 2). 

Then use (VI1 2) to eliminate from (VI1 5), writing the result as 

i s  a known function of E , this equation may be integrated over 

, with Vz following immediately from (VI1 4). 
P Since 

vr to give 7 
For the simple case that the field variations are sinusoidal, of the form 

(VI1 8) 

(VI1 9) . 
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' where i s  a dimensionless number, i t  is  readily shown that 

. 
so that 

It fz!!ews !hnt 1, 3 / z x  
Since now a/Dy = (k? /' & x )  u/ J 

(VI1 8) may be integrated to give 

so that = -7- 

t 

(VI1 12) 

(VI1 13) 

(VI1 14) 



The interesting quantity i s  V g  , representing the rate a t  which the 

gas moves downward across the field. The rate of motion i s  

to be compared w i th  the characteristic rate of motion, i f  

O ( y\ 3 S k x  A/G ' a') ' 

k *. were not large 

compared to l/A . In that case i t  i s  gravity rather than pressure which 

P 8 leads to a 
pushes the gas across the field. The gravitational force 

t 

vi? = - t g / J  = - % / A  downward drift in  terms 

of the characteristic scale height A = a/ 8 . It follows a t  once that 

, given by (VI1 14) i s  larger than the usual diffusion velocity by 

the factor s a k, '/ kr . Since in  the actual case i s  of 

~ 2 )  v;I 
1 

the order of unity, the enhancement i s  large. 

The instability which leads to large k, causes the gas to dri f t  out of the 

magnetic f ield at  a rate k,' / k 7 &  times faster than under gravity 

'4 alone. 
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Figure Captions 

Fig. 1 Sketch of the geometry of the simple gas, field, gravity configuration 

employed i n  the present discussion of the instability of the gas, field, 

and cosmic ray system. 

Sketch of the slabs of gas (cross hatched) formed by compressing the 

gas along the magnetic field. The magnetic lines of force are indicated 

before their release by the horizontal lines, and afterward by the lines 

which bow upward between the slabs. The x -direction i s  

perpendicular to the 

Fig. 2 

2 -plane of the paper. 7 
Fig. 3 Plot of the energy decrease Ag of the magnetic f ie ld between 

two slabs of gas, i n  units of the energy 

release. The in i t ia l  f ield configuration of the f ie ld i s  given by (1) 

and i s  represented by the straight lines of force in  Fig, 2. The final 

field i s  described by (J 3) and @4), represented by the bowed lines 

of force i n  Fig. 2. 

Sketch of the coordinate system used in  Appendix V to treat the force 

i n  the f ie ld before 

Fig. 4 

exerted between two elements of gas of mass 9?’)d and 9% 
suspended in  the gravitational f ie ld 

horizontal magnetic field. 

Sketch of the displaced lines of force i n  the neighborhood of a smal 

element of gas suspended i n  the field. The lines of force 

above and below are displaced downward along with the lines 

threading 

upward. 

3 on the lines of force of a 

Fig. 5 

‘331 
. Consequently the lines to the side are displaced 



Y 

L 

Fig. 6 A plot of the growth rate 2/.t of the instability i n  units of 1/7. 

as a function of ksc for k7 A = I ,  Ira  A =0.25, 

0.5, 1.0, 2.0 and f(T- / A a = 3  x 10 -5 , illustrating the 

broad spectrum of the instability. 

Fig. 7 Sketch of two lines of force separated by the small distance T / k z  

i n  the % -direction. The low point on the line a t  X 0 i s  

represented by A and the adjacent high point of the line a t  

3~ = tt/ kx i s  represented by B . 
Fig. 8 Sketch of the currents associated with a small element of gas of length 

2 a and weight lying across a magnetic f ield in  the 

7 -di recti on. 
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